主要功能
成像功能:對 Ft、Fo、Fm、Fv/Fm、F、Fm’、Y(II)、Y(NO)、Y(NPQ)、NPQ、qN、qP、qL、ETR、Abs.、NIR、Red 等至少 17 種參數進(jìn)行成像分析。測定調節性能量耗散 Y(NPQ),反映植物光保護能力,測定非調節性能量耗散Y(NO),反映植物光損傷程度。
程序測量功能:可程序測量熒光誘導曲線(xiàn)、快速光曲線(xiàn)和暗弛豫,也可手動(dòng)測量;在測量過(guò)程中能自動(dòng)分析所有熒光參數的變化趨勢
AOI 功能:可在測量前或測量后任意選擇感興趣的區域(AOI),程序將自動(dòng)對選擇的 AOI 的數據進(jìn)行變化趨勢分析,并在報告文件中顯示相關(guān) AOI 的數據。所有報告文件中顯示的數據都可導出到 EXCEL 文件中。
成像異質(zhì)性分析功能:對任意參數任意時(shí)間的成像,可在圖像上任意選取兩點(diǎn),軟件自動(dòng)對兩點(diǎn)間的數據進(jìn)行橫向異質(zhì)性分析,并可導出到 EXCEL 文件中。
成像數據范圍分析功能:對任意參數任意時(shí)間的成像,可分析任意兩個(gè)熒光數值之間有多少個(gè)像素點(diǎn),多少面積(cm2)。
突變株篩選功能:可跟據成像結果快速篩選光合、產(chǎn)氫/油、抗逆(抗鹽、抗旱、抗病等)等突變株。
微藻毒理研究功能:可同時(shí)測量 96 個(gè)微藻樣品(對照和處理組)的光合活性,軟件自動(dòng)給出處理組樣品相對于對照組的光合抑制百分比。
吸光系數測量功能:快速測量葉片的吸光系數。吸光系數測量光源: 16 個(gè)紅光(650 nm)和 16 個(gè)近紅外(780 nm)LED,用于測量植物葉片或藻類(lèi)樣品 PAR 吸光系數。
測量參數
Ft、Fo、Fm、Fv/Fm、F、Fm’、Y(II)、Y(NO)、Y(NPQ)、NPQ、qN、qP、qL、ETR、Abs.、NIR、Red 等。
應用領(lǐng)域
光合作用研究:可以在完全相同的條件下同時(shí)對大量樣品進(jìn)行成像
植物病理學(xué):病斑部位(包括肉眼不可見(jiàn)時(shí))成像以及病斑擴散的時(shí)空動(dòng)力學(xué)
植物脅迫生 理學(xué):肉眼不可見(jiàn)脅迫損傷的早期檢測
遺傳育種:出苗后大規??焖俸Y選高光合/抗旱/抗熱/抗凍/抗病等植株
突變株篩選:快速篩選模式植物的光合突變株、抗逆突變株、產(chǎn)氫微藻突變株等
微藻毒理學(xué):不同毒物濃度多個(gè)重復的樣品一次測完,軟件自動(dòng)計算抑制比率
分子生物學(xué):宏觀(guān)水平上檢測樣品的綠色熒光蛋白(GFP)熒光
其它多種擴展研究
選購指南
一、熒光成像 MAXI 版
系統組成:通用型主機,LED 供電單元, LED 光源,CCD,數據線(xiàn),軟件等。
注意:高等植物或真核藻類(lèi)測量時(shí)選擇藍光光源(推薦),藍藻測量請選擇紅光光源。
![]() | ![]() |
熒光成像 MAXI 版本 |
二、熒光成像 MINI 版
系統組成:通用型主機(下圖中未顯示),LED 光源(如下圖),CCD,數據線(xiàn),軟件等。
注意:高等植物或真核藻類(lèi)測量時(shí)選擇藍光光源(推薦),藍藻測量請選擇紅光光源。
![]() |
熒光成像 MINI 版 |
三、熒光成像 MICROSCOPY 版
系統組成:通用型主機,特制顯微鏡,CCD,數據線(xiàn),軟件等。
![]() |
熒光成像 MICROSCOPY 版 |
![]() | ![]() | ![]() |
葡萄葉片 Y(NPQ) 成像 | 葡萄葉片 PS/50 成像結果 | MINI 版本成像結果 |
![]() | ![]() | ![]() |
顯微版本成像結果 | 軟件成像界面 | 慢速誘導動(dòng)力學(xué)曲線(xiàn) |
產(chǎn)地:德國 WALZ
數據來(lái)源:光合作用文獻 Endnote 數據庫,更新至 2021 年 1 月,文獻數量超過(guò) 10000 篇
原始數據來(lái)源:Google Scholar
Chen, Y., et al. (2021). "Low UVA intensity during cultivation improves the lettuce shelf-life, an effect that is not sustained at higher intensity." Postharvest Biology and Technology 172: 111376.
Grimmer, J., et al. (2020). "Mild proteasomal stress improves photosynthetic performance in Arabidopsis chloroplasts." Nature communications 11(1): 1662.
García-Cerdán, J. G., et al. (2020). "Chloroplast Sec14-like 1 (CPSFL1) is essential for normal chloroplast development and affects carotenoid accumulation in <em>Chlamydomonas</em>." PNAS: 201916948.
Garcia-Molina, A. and D. Leister (2020). "Accelerated relaxation of photoprotection impairs biomass accumulation in Arabidopsis." Nature Plants.
Amstutz, C. L., et al. (2020). "An atypical short-chain dehydrogenase–reductase functions in the relaxation of photoprotective qH in Arabidopsis." Nature Plants 6(2): 154-166.
Acebron, K., et al. (2020). "Diurnal dynamics of non-photochemical quenching in Arabidopsis npq mutants assessed by solar-induced fluorescence and reflectance measurements in the field." New Phytologist n/a(n/a).
Swift, T. A., et al. (2020). "Photosynthesis and crop productivity are enhanced by glucose-functionalized carbon dots." New Phytologist n/a(n/a).
Duan, L., et al. (2020). "Characterization of CYCLOPHILLIN38 shows that a photosynthesis-derived systemic signal controls lateral root emergence." Plant Physiology.
Adamakis, I.-D., et al. (2020). "Hydrogen Peroxide Production by the Spot-Like Mode Action of Bisphenol A." Frontiers in Plant Science 11.
Adamakis, I. S., et al. (2020). "Rapid Hormetic Responses of Photosystem II Photochemistry to Cadmium Exposure." anatomy & morphology.
Andrzejczak, O. A., et al. (2020). "The Hypoxic Proteome and Metabolome of Barley (Hordeum vulgare L.) with and without Phytoglobin Priming. ." Int. J. Mol. Sci(21): 1546.
Araniti, F., et al. (2020). "Metabolomic, proteomic and physiological insights into the potential mode of action of thymol, a phytotoxic natural monoterpenoid phenol." Plant Physiology and Biochemistry.
?s Hovind, A. B., et al. (2020). "Functional trade-off of hydration strategies in old forest epiphytic cephalolichens." Fungal Biology.
Bednarczyk, D., et al. (2020). "Influence of short-term exposure to high light on photosynthesis and proteins involved in photo-protective processes in tomato leaves." Environmental and Experimental Botany 179: 104198.
Begum, N., et al. (2020). "AMF inoculation and phosphorus supplementation alleviates drought induced growth and photosynthetic decline in Nicotiana tabacum by up-regulating antioxidant metabolism and osmolyte accumulation." Environmental and Experimental Botany: 104088.
Borlongan, I. A., et al. (2020). "The effects of temperature and irradiance on the photosynthesis of two heteromorphic life history stages of Saccharina japonica (Laminariales) from Japan." Journal of Applied Phycology.
Chen, Z., et al. (2020). "Functional growth, photosynthesis and nutritional property analyses of lettuce grown under different temperature and light intensity." The Journal of Horticultural Science and Biotechnology: 1-9.
Chen, Z., et al. (2020). "Comprehensive analysis of the Ppatg3 mutant reveals that autophagy plays important roles in gametophore senescence in Physcomitrella patens." BMC Plant Biology 20(1): 440.
Claquin, P., et al. (2020). "Singular physiological behavior of the scleractinian coral Porites astreoides in the dark phase." Coral Reefs.
Correia, P. M. P., et al. (2020). "Photoprotection and optimization of sucrose usage contribute to faster recovery of photosynthesis after water deficit at high temperatures in wheat." Physiologia plantarum n/a(n/a).
Cruz de Carvalho, R., et al. (2020). "Using Chlorophyll a Fluorescence Imaging to Select Desiccation-Tolerant Native Moss Species for Water- Sustainable Green Roofs." Water 12.
Fan, Z.-q., et al. (2020). "Involvement of BrNAC041 in ABA-GA antagonism in the leaf senescence of Chinese flowering cabbage." Postharvest Biology and Technology 168: 111254.
Feng, S., et al. (2020). "Morphological and physiological responses of two willow species from different habitats to salt stress." Scientific Reports 10(1): 18228.
Ferreira, T. M. M., et al. (2020). "Effect of salinity stress in Setaria viridis (L.) P. Beauv. accession A10.1 during seed germination and plant development .Ciência e Agrotecnologia." Ciência e Agrotecnologia 44.
Gao, S., et al. (2020). "Photosynthetic characteristics and chloroplast ultrastructure of welsh onion (Allium fistulosum L.) grown under different LED wavelengths." BMC Plant Biology 20(1): 78.
Gauslaa, Y., et al. (2020). "Growth rates and thallus loss in hair lichens along small-scale Picea abies-canopy gradients." Fungal Ecology 47: 100947.
Gómez-Espinoza, O., et al. (2020). "Decomposition of Calcium Oxalate Crystals in Colobanthus quitensis under CO2 Limiting Conditions." Plants(9): 1307.
Ahammed, G. J., et al. (2020). "Overexpression of tomato RING E3 ubiquitin ligase gene SlRING1 confers cadmium tolerance by attenuating cadmium accumulation and oxidative stress." Physiologia plantarum n/a(n/a).
He, J., et al. (2020). "Drought does not induce crassulacean acid metabolism (CAM) but regulates photosynthesis and enhances nutritional quality of Mesembryanthemum crystallinum." PLoS ONE 15(3): e0229897.
Ho, L. H., et al. (2020). "Potassium Application Boosts Photosynthesis and Sorbitol Biosynthesis and Accelerates Cold Acclimation of Common Plantain (Plantago major L.)." Plants (Basel) 9(10).
Huang, J., et al. (2020). "CaASR1 promotes SA- but represses JA-dependent signaling to enhance resistance of Capsicum annuum to bacterial wilt by modulating CabZIP63." Journal of Experimental Botany.
Huizhen, D., et al. (2020). "Genome-wide Identification of PbrbHLH Family Genes, and Expression Analysis in Response to drought and Cold Stresses in Pear (Pyrus Bretschneideri)." BMC Plant Biology.
Jaghdani, S. J., et al. (2020). "Mg deficiency induces photo-oxidative stress primarily by limiting CO2 assimilation and not by limiting photosynthetic light utilization." Plant Science: 110751.
Jiang, X., et al. (2020). "Light-induced HY5 Functions as a Systemic Signal to Coordinate the Photoprotective Response to Light Fluctuation." Plant Physiology 184(2): 1181-1193.
Jurado-Flores, A., et al. (2020). "Exploring the Functional Relationship between y-Type Thioredoxins and 2-Cys Peroxiredoxins in Arabidopsis Chloroplasts." Antioxidants (Basel) 9(11).
Kaiser, E., et al. (2020). "Growth under Fluctuating Light Reveals Large Trait Variation in a Panel of Arabidopsis Accessions." Plants (Basel) 9(3): 316.
Kulikova, N., et al. (2020). "Silver nanoparticles stabilized by humic substances adversely affect wheat plants and soil." Journal of Nanoparticle Research 22.
Lan, C.-Y., et al. (2020). "Comparisons of Chlorophyll Fluorescence and Physiological Characteristics of Wheat Seedlings Influenced by Iso-Osmotic Stresses from Polyethylene Glycol and Sodium Chloride." Agronomy 10: 325.
Li, P., et al. (2020). "Response of lipid productivity to photosynthesis of Chlorella vulgaris under various nutrient stress modes." 12(5): 056102.
Li, X., et al. (2020). "Role of jasmonate in Lolium perenne compensatory growth and photosynthesis: uncoupling with photosynthesis and differential effects on growth." Acta Physiologiae Plantarum 42(6): 95.
Li, X., et al. (2020). "Light Signaling-Dependent Regulation of Photosystem II Biogenesis and Functional Maintenance." Plant Physiology: pp.00200.02020.
Liu, G., et al. (2020). "GREEN STRIPE, encoding methylated TOMATO AGAMOUS-LIKE 1, regulates chloroplast development and chlorophyll synthesis in fruit." New Phytologist n/a(n/a).
Liu, X., et al. (2020). "Ofloxacin induces etiolation in Welsh onion leaves." Chemosphere: 128918.
Llorente, B., et al. (2020). "Synthetic conversion of leaf chloroplasts into carotenoid-rich plastids reveals mechanistic basis of natural chromoplast development." PNAS 117(35): 21796-21803.
Mishra, M., et al. (2020). "How do rice seedlings of landrace Pokkali survive in saline fields after transplantation? Physiology, biochemistry, and photosynthesis." Photosynthesis Research.
Perera-Castro, A. V., et al. (2020). "What drives photosynthesis during desiccation? Mosses and other outliers from the photosynthesis-elasticity trade-off." Journal of Experimental Botany.