● 上海澤泉科技股份有限公司
● 上海師范大學(xué)
● 11月15日(周三)上午9:00,華南農業(yè)大學(xué)生科院221
● 11月22日(周三)上午10:30,石河子大學(xué)農學(xué)院
● 11月24日(周五)上午9:00,中國農業(yè)科學(xué)院農業(yè)環(huán)境與可持續發(fā)展研究所一樓報告廳
線(xiàn)下線(xiàn)上同時(shí)進(jìn)行,線(xiàn)上騰訊會(huì )議并通過(guò)微信視頻號直播
1、識別下方二維碼,填寫(xiě)信息,點(diǎn)擊提交即可免費參會(huì )。
2、澤泉科技視頻號將全程直播,歡迎您預約觀(guān)看(識別下方二維碼即可關(guān)注視頻號)。

Gert Schansker 博士
Gert Schansker博士畢業(yè)于荷蘭瓦赫寧根大學(xué),獲得植物生理學(xué)和生物物理學(xué)博士學(xué)位。主要研究方向為光合機構的光脅迫反應,提出了光系統II受體側碳酸氫鹽的不可逆損失是光系統II活性降低的主要發(fā)生機制。他在研究中應用的主要非侵入性技術(shù)之一是葉綠素a熒光與光聲信號的同步測量技術(shù)。之后,在歐盟的資助下,前往希臘雅典Demokritos研究所從事博士后研究,使用EPR技術(shù)研究一氧化氮(NO)與光系統II錳簇S態(tài)的相互作用。他利用一系列單周轉飽和閃光及葉綠素熒光Fo信號與S態(tài)相關(guān)的周期-4振幅研究了S態(tài)與S態(tài)衰變對NO的響應,闡明了實(shí)驗中觀(guān)測到的NO誘導的多線(xiàn)態(tài)EPR信號可能就是S-2態(tài)的表征。他后來(lái)在瑞士日內瓦Reto Strasser博士的實(shí)驗室工作,研究了光暗轉換過(guò)程中820 nm吸收信號與葉綠素a熒光動(dòng)力學(xué)之間的關(guān)系,系統研究了多種植物在各種脅迫條件下的快速葉綠素熒光誘導動(dòng)力學(xué)曲線(xiàn)(O-I1-I2-P或O-J-I-P瞬變),為此類(lèi)測量提供了幾乎完整的描述。在匈牙利結束了光適應和一種蝦青素過(guò)量導致煙草突變的研究之后,自2018年開(kāi)始,Gert Schansker博士作為德國WALZ公司的應用科學(xué)家,負責Dual-KLAS-NIR和Multi-Color-PAM相關(guān)理論和應用的研究工作。
1. Schansker, G. (2022). "Determining photosynthetic control, a probe for the balance between electron transport and Calvin–Benson cycle activity, with the DUAL-KLAS-NIR." Photosynthesis Research.
2. Schansker, G., et al. (2022). "Identification of Twelve Different Mineral Deficiencies in Hydroponically Grown Sunflower Plants on the Basis of Short Measurements of the Fluorescence and P700 Oxidation/Reduction Kinetics." Frontiers in Plant Science, 13.
3. TóTH, S. Z., et al. (2020). "Probing the photosynthetic apparatus noninvasively in the laboratory of Reto Strasser in the countryside of Geneva between 2001 and 2009." Photosynthetica 58: 560-572.
4. Schansker G, Tóth S Z, Holzwarth A R, et al. Chlorophyll a fluorescence: beyond the limits of the Q A model[J]. Photosynthesis research, 2014, 120(1-2): 43-58.
5. Schansker G, Tóth S Z, Kovács L, et al. Evidence for a fluorescence yield change driven by a light-induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2011, 1807(9): 1032-1043.
6. Schansker G, Yuan Y, Strasser R J. Chl a fluorescence and 820 nm transmission changes occurring during a dark-to-light transition in pine needles and pea leaves: a comparison[M]//Photosynthesis. Energy from the Sun. Springer, Dordrecht, 2008: 945-949.
7. Schansker G, Tóth S Z, Strasser R J. Dark recovery of the Chl a fluorescence transient (OJIP) after light adaptation: the qT-component of non-photochemical quenching is related to an activated photosystem I acceptor side[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2006, 1757(7): 787-797.
8. Schansker G, Tóth S Z, Strasser R J. Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2005, 1706(3): 250-261.
9. Schansker G, Strasser R J. Quantification of non-Q B-reducing centers in leaves using a far-red pre-illumination[J]. Photosynthesis research, 2005, 84(1-3): 145-151.
10. Schansker G, Srivastava A, Strasser R J. Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves[J]. Functional Plant Biology, 2003, 30(7): 785-796.
11. Schansker G, Goussias C, Petrouleas V, et al. Reduction of the Mn cluster of the water-oxidizing enzyme by nitric oxide: formation of an S-2 state[J]. Biochemistry, 2002, 41(9): 3057-3064.
12. Schansker G, Van Rensen J J S. Performance of active photosystem II centers in photoinhibited pea leaves[J]. Photosynthesis Research, 1999, 62(2): 175-184.